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Abstract. We attack the question of E2-formality of differential graded algebras over
Fp via obstruction theory. We are able to prove that E2-algebras whose cohomology ring
is a polynomial algebra on even degree classes are intrinsically formal. As a consequence
we prove E2-formality of the classifying space of some compact Lie group or of Davis-
Januszkiewicz spaces.

Formality of spaces is an old idea originating in the field of rational homotopy theory.
In that context, a space is said to be formal if its rational cohomology is quasi-isomorphic
to its cochains as a commutative or E8-algebra. When this is the case, the whole rational
homotopy type is controlled by a very manageable algebraic gadget.

With integral or torsion coefficients, the question of formality admits several versions.
The most naive generalization (i.e. asking for cochains to be quasi-isomorphic to cohomology
as E8-algebras) does not have interesting examples, and one is lead to studying weaker forms
of formality. There is some literature devoted to proving E1-formality of certain spaces, i.e.
proving that C˚pX, kq is quasi-isomorphic to H˚pX, kq as differential graded algebras (see
for example [EH92, BB20, Sal20, DCH21, CH22]). When this is the case some invariants
of X can be computed from the cohomology ring of X. For example, the bar construction
spectral sequence

TorH˚
pX;Fpq

pFp,Fpq ùñ H˚pΩX,Fpq

collapses at the E2-page. However, this collapse results is additive and there are usually
some multiplicative extension that cannot be resolved by E1-formality.

There is in fact a countable family of formality properties interpolating between E1-
formality and E8-formality. Namely, one can study En-formality for any n. We say that
a space X is En-formal if its cohomology ring viewed as an En-algebra using the map of
operads En Ñ Com is quasi-isomorphic to its singular cochains with its underlying En-algebra
structure. This notion was introduced by Mandell in [Man09]. He made several conjectures
about it. In particular, he conjectured that n-fold suspensions are En-formal. This conjecture
was proved very recently in [HL24].

In the present paper, we study E2-formality. Our approach is obstruction theoretic.
Obstruction theory has been classically used to prove or study formality (see for example
[HS79, BB20, Sal17, Emp24]). Typically, there is a sequence of obstruction classes in
Hochschild or André-Quillen cohomology groups that have to vanish for the algebra to be
formal. In general, computing the actual obstructions can be very difficult unless the group
in which it lives is zero.

In our case, we exploit the fact that the operations on the homology of an E2-algebras
are very explicit thanks to the work of Cohen (see [CLM76]) and quite manageable. The
obstruction group is a Quillen cohomology group in the category of W1-algebras, where
the monad W1 is the monad of homology operations on E2-algebras. This makes the
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obstruction groups computable in certain easy situations. Our main result is Theorem 3.4
which states that E2-algebras whose cohomology ring is polynomial on even degree variables
are E2-intrinsically formal.

We are in fact able to push this result a bit further to prove formality of certain diagrams
of E2-algebras. As a corollary, we prove E2-formality of the classifying space of compact Lie
groups at primes that do not divide the order of the Weyl group (Theorem 5.1) generalizing
a recent result of Benson and Greenlees proving E1-formality of such spaces (see [BG23]). We
recover E2-formality of Davis Januszkiewicz spaces (originally proven by Franz in [Fra21b])
and we prove a multiplicative collapse result for certain Eilenberg-Moore spectral sequences
(Theorem 5.8).

Acknowledgements. I am grateful to Jeffrey Carlson, Alexander Berglund and Anibal
Medina-Mardones for useful conversations about this paper.

Conventions. We denote by grVectk the category of graded vector spaces over a field k.
This category has a symmetric monoidal structure whose symmetry isomorphism involves
the usual sign. Our graded vector spaces are cohomologically graded. We write V ÞÑ sV for
the shift in this category given by psV qi “ V i´1.

Given a graded vector space V , we denote by SympV q the symmetric algebra on V and
ΛpV q the exterior algebra on V . Of course, the sign rules implies that, if V is concentrated
in odd degrees and the characteristic of the field is not 2, then SympV q “ ΛpV q.

1. Quillen cohomology

1.1. Non-abelian derived functor. We follow the treatment of [Fra15]. Let C be a
complete and cocomplete category with a set of projective compact generators. Following
Frankland, such a category shall be called quasi-algebraic. It is a theorem of Quillen that,
if C is a quasi-algebraic category, its category of simplicial objects has a model structure
transferred along the right adjoint functor

sC Ñ sSetG

X‚ ÞÑ tHomCpG, X‚quGPG

where G is a set of compact projective generators of C.
Given a left adjoint functor between two quasi-algebraic categories, we define its left

derived functor

LF : sC Ñ sD

to be the left derived functor in the sense of model categories of the functor F : sC Ñ sD
given by degreewise application of the functor F .

Remark 1.1. There is a conceptural description of the 8-category underlying the model
category sC as the non-abelian derived category of C. Explicitly, this is completion of
the category Ccp of compact projective objects of C under 8-sifted colimits. Using this
terminology, the functor LF is the unique extension of F|Ccp into a functor that preserves
sifted colimits. This is originally due to Lurie but we refer the reader to [ČS24, Section 5.1.1]
for a very comprehensive description of this point of view.
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1.2. Quillen cohomology. Let C is a quasi-algebraic category. For c an object of C, we
may consider the category AbpC{cq of abelian group objects over c. By the adjoint functor
theorem, there is an abelianization functor

Ab : C{c Ñ AbpC{cq

which is left adjoint to the forgetful functor. We define the cotangent complex of c to be the
left derived functor of the abelianization functor. We denote this object by LC

c or simply
Lc if there is no ambiguity. It follows from [Fra15, Propositions 3.33 and 3.34] that the
categories C{c and AbpC{cq are quasi-algebraic and hence that the relevant model structures
exist.

Given an object m P AbpC{cq, we define the Quillen cohomology of c with coefficients in
m as :

AQs
Cpc, mq :“ πsHomAbpC{cqpLc, mq.

(Observe that HomAbpC{cqpLc, mq is a cosimplicial abelian group, and we denote by πs is
the s-th cohomology group of its associated cochain complex.)

Remark 1.2. In all the cases of interest to us, the category C will come with a forgetful
functor to the category of graded vector spaces over k. Moreover, it will be the case that
the shift functor on the category of graded vector space will pass to the category of abelian
group objects in C{c. In this case, the André-Quillen cohomology groups are bigraded

AQs,t
C pc, mq “ AQs

Cpc, stMq.

Proposition 1.3. Let F : C Ô D : U be an adjunction between quasi-algebraic categories.
Let c be an object of C. Assume that LF pcq Ñ F pcq is a weak equivalence. Let m P

AbpD{F pcqq. Then there is an isomorphism
AQ˚

DpFc, mq – AQ˚
Cpc, Umq.

Proof. This is almost [Fra15, Proposition 4.10 (4)] except that we do not ask that F preserves
all weak equivalences contrary to Frankland. However, it is straightforward to check that all
that is needed in the proof is that LF pcq Ñ F pcq is a weak equivalence. □

2. Cohomology of E2-algebras

In this section, we restrict to working over a prime field Fp with p a prime number. We
recall the work of Cohen (see [CLM76, Chapter III]) describing the cohomology operations
on E2-algebras.

Definition 2.1. A shifted restricted Lie algebra is a graded vector space V ˚ with a Lie
bracket

r´, ´s : V i b V j Ñ V i`j´1

and a restriction
ξ : V i Ñ V pi´p`1

satisfying the following relations
(1) The Lie bracket is bilinear.
(2) The Lie bracket is antisymmetric

rx, ys “ ´p´1qp|x|´1qp|y|´1qry, xs.

(3) The Lie bracket satisfies the graded Jacobi relation.

p´1qp|x|´1qp|z|´1qrx, ry, zss ` p´1qp|x|´1qp|y|´1qry, rz, xss ` p´1qp|y|´1qp|z|´1qrz, rx, yss “ 0
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(4) The Lie bracket satisfies the relation rx, rx, xss “ 0. (This relation follows from the
Jacobi relation if p ‰ 3.)

(5) The operation ξ is zero on even degree elements. (If p “ 2, this relation does not
exist.)

(6) We have

ξpx ` yq “ ξpxq ` ξpyq `

p´1
ÿ

i“1
di

2pxqpyq

where the operations di
2 are described in [CLM76, p.218].

(7) We have
ξpλxq “ λξpxq

for all λ P Fp.
(8) We have

rx, ξpyqs “ adp
pyqpxq

Remark 2.2. Over F2, relation (6) becomes

ξpx ` yq “ ξpxq ` ξpyq ` rx, ys.

One consequence of this is that rx, xs “ 0 whatever the degree of x is. In other characteristics
this only holds for elements of odd degree.

Equivalently a shifted restricted Lie algebra is a graded vector space V together with
the data of a graded restricted Lie algebra structure on s´1V . We denote by rLieAlg
the category of restricted Lie algebras and rLie1Alg the category of shifted restricted Lie
algebras.

Definition 2.3. A W1-algebra is a graded vector space over Fp equipped with
‚ A degree ´1 Lie bracket

r´, ´s : V i b V j Ñ V i`j´1

‚ A restriction
ξ : V i Ñ V pi´p`1

‚ An additional linear map

ζ : V i Ñ V pi´p`2

(if p “ 2, this map does not exist)
‚ A product

V i b V j Ñ V i`j

such that the following axioms are satisfied.
(1) The Lie bracket and ξ make V into a shifted restricted Lie algebra.
(2) The product is bilinear and graded commutative.
(3) The operation ζ vanishes on even degree elements.
(4) We have the formula

rx, ζys “ 0
(5) The bracket is a derivation with respect to the product in each variable.

rx, yzs “ rx, ysz ` p´1q|y|p|x|`1qrx, zsy
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(6) The operations ξ and ζ satisfy a Cartan formula.

ξpxyq “ xpξpyq ` ξpxqyp `
ÿ

Γi,jxiyj

ζpxyq “ ζpxqyp ´ xpζpyq

where the term Γi,j are described on page 335 of [CLM76]. (if p “ 2 the Cartan
formula is

ξpxyq “ x2ξpyq ` ξpxqy2 ` xrx, ysyq

Let us denote by
F W1 : grVectFp

Ñ W1Alg
the free W1-algebra monad.

Theorem 2.4 (Cohen). Let C be a cochain complex of Fp-vector spaces. Let E2 denotes the
free C˚pE2,Fpq-algebra monad. There is a natural isomorphism

H˚pE2pCqq – F W1 pH˚pCqq

In particular, the cohomology of a dg-E2-algebra is naturally a W1-algebra.

By standard abstract nonsense, the restriction functor
W1Alg Ñ rLie1Alg

has a left adjoint that we shall denote by F W1
rLie1

.
We shall need an explicit description of this left adjoint. Given a graded vector space, V ,

we denote by ζV the graded vector space
ζV “

à

i odd
si´pi`p´2V i

There is an operation
ζ : V Ñ ζV

taking v P V i with i odd to the element v in the summand si´pi`p´2V i of ζV . This operation
is not a map of graded vector space, instead it behaves with respect to the degree as the
operation ζ in a W1-algebra. We define Symζ to be the following functor from the category
of graded vector spaces to itself

V ÞÑ SympV ‘ ζV q.

Proposition 2.5. Let p be an odd prime. The composed functor

rLie1Alg
F

W1
rLie1

ÝÝÝÝÑ W1Alg forget
ÝÝÝÑ grVectFp

is isomorphic to g ÞÑ Symζpgq. A similar proposition holds over F2 if we replace Symζ by
Sym.

Proof. Both functors of g preserve ordinary sifted colimits. Moreover, rLie1Alg is an
algebraic category, i.e., it is the completion of its subcategory of free algebras on a finite
dimensional vector space under ordinary sifted colimits. Therefore, it suffices to prove that
both functors coincide on the category of free shifted restricted Lie algebras on a finite
dimensional graded vector space.

If g is the free restricted Lie algebra on V , then a basis of g is given by symbols ξilα where
the symbols lα form an arbitrary basis of the free Lie algebra on V and the exponent i is
arbitrary if lα is of even degree and is zero otherwise. On the other hand, F W1

rLie1
pgq – F W1 pV q

is explicitly described in [CLM76, page 227]. It is the free commutative algebra on elements
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of the form ζϵξilα where lα and ξi are as before and ϵ P t0, 1u and is required to be 0 if ξilα
is of even degree. The result follows from this explicit description.

The case p “ 2 is similar. □

Remark 2.6. Observe that if g is concentrated in even degrees (in which case the Lie bracket
and ξ must be zero for degree reasons), then F W1

rLie1
pgq is simply Sympgq with trivial operations

r´, ´s, ξ and ζ.

Proposition 2.7. Let V be a graded vector space, then
LSymζpV q » SymζpV q

and
LSympV q » SympV q

Proof. This proposition holds for any functor F : grVectk Ñ grVectk that preserves filtered
colimits. Indeed, LF coincides with F on finite dimensional vector spaces by construction,
moreover, both LF and F preserve filtered colimits, it follows that they must coincide on
any graded vector space. □

3. Computation of the obstruction group

Definition 3.1. We call a bigraded abelian group even (resp. odd) if it is concentrated in
bidegrees ps, tq such that s ` t is even (resp. odd).

Lemma 3.2. Let A “ ΛpV q be the exterior algebra on a graded vector space V concentrated
in odd degrees and of finite total dimension. Let M be an A-module concentrated in odd
degrees and degreewise of finite dimension. We view M as a bimodule using the multiplication
map A b A Ñ A. Then, the bigraded abelian group

AQ˚,˚
AssAlgpA, Mq

is even.

Proof. There is an isomorphism
AQs,˚

pA, Mq – DerpA, Mq if s “ 0
– HHs`1

pA, Mq if s ą 0

Since DerpA, Mq Ă HomkpA, Mq is concentrated in even degrees, it suffices to prove that
HH˚,˚

pA, Mq is odd.
There exists a unique map of commutative algebras

A Ñ A b A

sending v P V to v b 1 ´ 1 b v. Indeed, if k is of characteristic different from 2, then
ΛpV q – SympV q is free and if k is of characteristic 2, then we do indeed have

pv b 1 ´ 1 b vq2 “ 0
By [CE56, Theorem X.6.1], we have an isomorphism

HH˚
pA, Mq – Ext˚

Apk, M̃q

where M is viewed as a left A-module using the map above. By our assumption, M̃ is simply
the k-vector space M with the trivial A-module structure. So, using the finite dimensionality
of M , we have

Ext˚
Apk, M̃q – Ext˚

Apk, kq bk M
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Since M is odd, it suffices to prove that Ext˚
Apk, kq is even. If V is one-dimensional so that

A “ krxs{x2. Then a free resolution of k as an A-module is given by

k Ð A
ˆx

ÐÝÝ s|x|A
ˆx

ÐÝÝ s2|x|A
ˆx

ÐÝÝ . . .

It follows that the bigraded abelian group Ext˚,˚
A pk, kq is even. For a general V , ExtApk, kq is

a tensor product of finitely many bigraded abelian groups of this form, therefore the answer
is still even. □

Lemma 3.3. Let V be a graded vector space concentrated in even degrees viewed as a shifted
restricted Lie algebra with trivial bracket and restriction, then AQ˚,˚

W1
pF W1

rLie1
pV q, Mq is even.

Proof. By Proposition 1.3, Proposition 2.5 and Proposition 2.7, we have an isomorphism

AQ˚
W1

pF W1
rLie1

pV q, Mq – AQ˚
rLie1

pV, Mq – AQ˚
rLieps´1V, s´1Mq

The universal enveloping algebra of the restricted Lie algebra s´1V is simply the exterior
algebra Λps´1V q (indeed since s´1V is in odd degrees, the exterior algebra is simply the
symmetric algebra when the characteristic is different from 2). Then we can use again
Proposition 1.3 (which in this context is [DFI24, Theorem 14.2]), we thus have

AQ˚
rLieps´1V, s´1Mq » AQ˚

AsspΛps´1V q, s´1Mq

which is even by the previous lemma. □

Theorem 3.4. Let A be a dg-E2-algebra over Fp such that H˚pAq “ SympV q with V a finite
dimensional graded vector space concentrated in even degrees. Let B be a dg-E2-algebra also
concentrated in even degrees and degreewise finite dimensional. Then

(1) for any map of Fp-algebras

f : H˚pAq Ñ H˚pBq

there is a map in the homotopy category of E2-algebras

f̃ : A Ñ B

such that H˚pf̃q “ f .
(2) Any E2-algebra whose cohomology ring is isomorphic to the cohomology ring of A

must be quasi-isomorphic to A.

Proof. First observe that (2) follows easily from (1). Thanks to Remark 2.6, a map of
Fp-algebras

f : H˚pAq Ñ H˚pBq

is automatically a map of W1-algebras. We may thus use the spectral sequence of [JN14,
Theorem 4.5] computing the mapping space mapE2´AlgpA, Bq. The relevant obstructions
to lifting f live in Et,t´1

2 . Thanks to [JN14, Theorem B], this group can be identified with
AQt

W1
pA, st´1H˚pBqq. The result then follows from the previous lemma. □

In the next section, we will push this result to certain diagrams of E2-algebras but we can
already give one application originally due to Bayındır and Moulinos (see [BM22, Theorem
1.3]).

Theorem 3.5 (Bayındır, Moulinos). There is a weak equivalence of E2-algebras over HFp :

THHpFpq » HFp b Σ8
` ΩS3
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Proof. Since S3 – SUp2q is a Lie group, the space ΩS3 is a 2-fold loop space. Therefore, both
sides of this equation are E2-algebras in HFp-modules so they can be viewed as dg-E2-algebras.
They also have isomorphic homotopy rings given by a polynomial ring on one generator of
(homological) degree 2. □

Remark 3.6. In fact Bayındır and Moulinos prove that for any polynomial ring R over Fp on
one even degree class, there is a unique E2-algebra with R as its homotopy ring (see [BM22,
Theorem 2.1]). This result also follows from Theorem 3.4.

For the sake of completeness, we state and sketch the proof of the characteristic zero
analogue of the above theorem.

Theorem 3.7. Let A be a dg-E2-algebra over Q such that H˚pAq “ SympV q with V a finite
dimensional graded vector space concentrated in even degrees. Let B be a dg-E2-algebra also
concentrated in even degrees and degreewise finite dimensional. Then

(1) for any map of Q-algebras
f : H˚pAq Ñ H˚pBq

there is a map in the homotopy category of E2-algebras
f̃ : A Ñ B

such that H˚pf̃q “ f .
(2) Any E2-algebra whose cohomology ring is isomorphic to the cohomology ring of A

must be quasi-isomorphic to A.

Proof. This is completely analogous to the proof of Theorem 3.4 except that the monad W1
has to be replaced by the Gerstenhaber monad. We obtain exactly as above an isomorphism

AQGerpH˚pAq, H˚pBqq – AQAsspΛps´1V q, s´1H˚pBqq.

Moreover, the right hand side is even thanks to Lemma 3.2 (which does not depend on the
characteristic of the field). □

Remark 3.8. The analogous theorem with E2 replaced by E8 is also true and well-known.
Indeed, in that case, A can be strictified to a commutative algebra. Then we can produce a
quasi-isomorphism

H˚pAq Ñ A

by sending each generator to a choice of cocycle representing it.

4. Diagrams of E2-algebras

4.1. Main theorem. Let C a quasi-algebraic category and let I be a small category. In
this situation CI is also a quasi-algebraic category. Given c : I Ñ C and m P AbpCI{cq, we
denote by AQC,Ipc, mq the corresponding Quillen cohomology.

Proposition 4.1. Let V : I Ñ grVect be a diagram taking values in finite dimensional
graded vector spaces concentrated in odd degrees. Let M : I Ñ grVect be a ΛpV q-module
satisfying pointwise the conditions of Lemma 3.2. We moreover assume that M viewed as a
diagram of k-vector spaces is injective. Then AQAss,IpΛpV q, Mq is even.

Proof. First recall that if C is an 8-category and I a small category, we have

mapCI pF, Gq » holim∆

˜

rss ÞÑ
ź

i0Ñi1Ñ...Ñis

mappF pi0q, Gpisqq

¸

.



E2-FORMALITY VIA OBSTRUCTION THEORY 9

By definition for A an associative algebra in grVectI and M an A-bimodule, we have

AQAss,IpA, Mq “ π˚maph
sAssAlgI {ApA Ñ A, A ‘ M Ñ Aq.

This mapping space is the homotopy fiber over the identity map of the map

maph
sAssAlgI pA, A ‘ M Ñ Aq Ñ maph

sAssAlgI pA, Aq.

Combining this observation with the cosimplicial space descrpition above, we obtain a
cosimplicial space whose totalization computes AQAss,IpA, Mq given by

rss ÞÑ
ź

i0Ñi1Ñ...Ñis

maph
sAssAlg{ApisqpApi0q Ñ Apisq, Apisq ‘ Mpisq Ñ Apisqq.

The E1 page of the corresponding Bousfield-Kan spectral sequence is given by

Es,t
1 “

ź

i0Ñi1Ñ...Ñis

AQt
pApi0q, Mpisqq.

From the comparision between Quillen cohomology and Hochschild cohomology, we see that
the row t “ 0 is given by the cosimplicial abelian group

rss ÞÑ
ź

i0Ñi1Ñ...Ñis

DerpApi0q, Mpisqq,

while for t ą 0, we get

rss ÞÑ
ź

i0Ñi1Ñ...Ñis

HHt`1
pApi0q, Mpisqq.

So far we did not use anything about the specific situation and the above discussion would
apply to any pair pA, Mq. Using the computation of Lemma 3.2, we see that the row t ă 0
of the E1-page is of the form

rss ÞÑ
ź

i0Ñi1Ñ...Ñis

HomkpF pi0q, Mpisqq,

where F : I Ñ grVectk is the dual of the functor

i ÞÑ ExtApiqpk, kq.

Likewise the 0th row is simply given by the cosimplicial abelian group

rss ÞÑ
ź

i0Ñi1Ñ...Ñis

HomkpV pi0q, Mpisqq.

(indeed there is an isomorphism DerpΛpV q, Mq – HomkpV, Mq). From this observation,
using injectivity of M , we deduce that the E2-page of the spectral sequence is concentrated
on the column s “ 0 and

E0,´t
2 “ ker

˜

d1 :
ź

iPI

AQt
pApiq, Mpiqq Ñ

ź

f :iÑj

AQt
pApiq, Mpjqq

¸

.

In particular, we see that

AQ˚,˚
I pA, Mq Ă

ź

iPI

AQ˚,˚
pApiq, Mpiqq

and is therefore even by Lemma 3.2. □
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Corollary 4.2. Let V : I Ñ grVectFp
be a diagram of finite dimensional graded vector

space concentrated in even degrees. Let M : I Ñ grVectFp
be an injective diagram concen-

trated in even degrees and equipped with the structure of a module over F W1
rLie1

pV q. Then
AQ˚,˚

W1,IpF W1
rLie1

pV q, Mq is even.

Proof. As in Lemma 3.3, we can reduce to showing that AQAss,IpΛps´1V q, s´1Mq is even
which is the content of the previous proposition. □

Theorem 4.3. Assume that i ÞÑ Apiq is a diagram of differential graded E2-algebra over Fp

such that
(1) There is a diagram V : I Ñ grVectFp

which is objectwise finite dimensional and
concentrated in even degrees, and a natural isomorphism

H˚pApiqq – F W1
rLie1

pV piqq

(2) The diagram
i ÞÑ H˚pApiqq

is injective as an I-diagram in Fp-vector spaces.
Then the diagram A is formal as a diagram of E2-algebras.

Proof. As in Theorem 3.4, we use obstruction theory. We observe that the hypothesis of [JN14,
Theorem B] apply. The category D is simply the category of I-diagrams of graded vector
spaces. Then conditikon a [JN14, Theorem B] holds thanks to our injectivity assumption.
The monad Talg is simply F W1 applied objectwise. It follows that the relevant obstruction
group is AQt,t´1

W1,I pF W1
rLie1

pV q, H˚pAqq which is zero thanks to the previous corollary. □

4.2. Criterion for injectivity. We borrow the following definition from Hovey (see [Hov99,
Definition 5.1.1])

Definition 4.4. A direct category is a category I with a functor λ : I Ñ pN, ďq such that
λpfq “ id if and only if f “ id.

Proposition 4.5. Let I be a direct category. Consider a diagram F : Iop Ñ grVect. Then
F is injective if for all i P I the canonical map

F piq Ñ limjPI,λpjqăλpiqF pjq

is surjective.

Proof. This is very similar to [Hov99, Proposition 5.1.4]. Let us call the number λpiq the
“degree” of the object i. Given an objectise injective map f : M Ñ N in grVectI , we can lift
a map g : M Ñ F to a map g̃ : N Ñ F inductively on degree. Assuming the lift has been
produced up to degree n, the next step is to find a lift on an object i of degree n ` 1. This
amounts to finding a diagonal filler in the following diagram

Mpiq

fpiq

��

gpiq // F piq

��
Npiq // limλpkqăλpiqF pkq

in which the bottom horizontal map is the composite

Npiq Ñ limλpkqăλpiqNpkq
g̃

ÝÑ limλpkqăλpiqF pkq
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This lifting problem has a solution since the left vertical map is injective while the right
vertical map is surjective. Once these liftings have been chosen for each i of degree n ` 1,
they are automatically compatible since there are no non-identity maps between objects of
the same degree. This completes the induction step. □

Example 4.6. Let I “ 0 Ñ 1. We can consider I as a direct category with λp0q “ 0, λp1q “ 1.
The proposition says that an arrow f : M1 Ñ M0 viewed as an I-diagram in grVect is
injective if f is surjective. Similarly, a span diagram

M Ñ N Ð P

is injective if each of the map is surjective.

Example 4.7. Let I be the poset of faces of a simplicial complex. Then F : Iop Ñ grVect is
injective if it is fat in the sense of [NR05, Definition 3.6]. Indeed, we can view I as a direct
category with λ : I Ñ N the dimension function.

5. Applications

5.1. Formality of BG for some compact Lie groups.

Theorem 5.1. Let G be a compact Lie group with maximal torus T and assume that p does
not divide the order of NGpT q{T . Then C˚pBG,Fpq is E2-formal.

Proof. Let us write W “ NGpT q{T . In this situation, by [Fes81, Theorem 1.5] there is a
quasi-isomorphism of E2-algebra

C ˚ pBG;Fpq Ñ C˚pBT,FpqW » C˚pBT,FpqhW

similarly, there is an isomorphism of commutative algebras
H˚pBG;Fpq Ñ H˚pBT,FpqW

Since H˚pBT ;Fpq is polynomial on even degree generators, then the result will hold if the
fomality quasi-isomorphism

C˚pBT ;Fpq » H˚pBT ;Fpq

given by Theorem 3.4 can be made W -equivariant. Since by assumption, p does not divide
the order of W , it follows that any FprW s-vector space is injective as a W -diagram and thus
the result follows from Theorem 4.3. □

Remark 5.2. The fact that, under these assumptions C˚pBG,Fpq is formal as an E1-algebra
is a theorem of Benson and Greenlees (see [BG23]).

Remark 5.3. It is observed by Benson and Greenlees in [BG23] that a compact Lie group
satisfying the assumptions of the above theorem does not necessarily have polynomial
cohomology. They give the example of the non-connected group G “ Z{2 ˙ T 2 with Z{2
acting on the torus by inversion. In that case H˚pBG,F3q is not a polynomial algebra.
It is given by the subalgebra F3rx2, xy, y2s of H˚pBT 2,F3q – F3rx, ys. Neverthess BG is
E2-formal over F3 thanks to our theorem.

Remark 5.4. The careful reader will notice that we did not exactly use the fact that p does not
divide the order of W “ NGpT q{T . What matters for the proof is that the action of W make
H˚pBT,Fpq into an injective FprW s-module. For example, if G “ Upnq, then T “ Up1qn

and W “ Sn. But H˚pBT,Fpq is injective for all values of p. So we can deduce from our
theorem that BUpnq is E2-formal. Of course, this is not very interesting as H˚pBUpnq,Fpq
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is a polynomial algebra on even degree generators so its formality also follows from Theorem
3.4. We do not know examples for which this extra generality is useful.

5.2. Formality of Davis-Januszkiewicz spaces. For our next application, recall, the
given a relative CW-complex A Ă X and a simplicial complex K with set of vertices V , we
may form the polyhedral product ZpK; pA, Xqq Ă XV given as

ZpK; pA, Xqq “
ď

σPK

Xσ ˆ AV ´σ.

A case of particular interest is the case A “ pt and X “ BS1. The resulting space is then
called a Davis-Januszkiewicz space.

Theorem 5.5. Let G be a compact Lie group such that the Fp-cohomology of BG is
polynomial on even degree generators. Then C˚pZpK; ppt, BGqq,Fpq is E2-formal for any
simplicial complex K. Moreover we have an isomorphism of algebras

H˚pZpK; ppt, BGq,Fpq – limpσ ÞÑ H˚pBGσ,Fpqq.

Proof. This is an application of Theorem 4.3. In this case the diagram

σ ÞÑ H˚pBGσ,Fpq

is injective by [NR05, Lemma 3.8] and Remark 4.7. It follows that the diagram Kop Ñ AlgE2

σ ÞÑ C˚pBGσ,Fpq

is formal, therefore, we have a quasi-ismorphism of E2-algebra

holimpσ ÞÑ H˚pBGσ,Fpqq » holimpσ ÞÑ C˚pBGσ,Fpqq » C˚pZpK; ppt, BGqq;Fpq.

□

Remark 5.6. The case G “ S1 is a theorem of Matthias Franz (see [Fra21b]). Franz phrases
his result using the notion of “homotopy Gerstenhaber algebras” insead of E2-algebras but
we have learned from Anibal Medina-Mardones that the two results should be equivalent.
Let us also mention that in that case, the cohomology of ZpK; ppt, BS1qq can be computed
and is given by the Stanley-Reisner algebra associated to the simplicial complex K.

Remark 5.7. The polyhedral product construction can be extended to any map A Ñ X (not
just relative CW-complexes) by replacing the definition above by the homotopy colimit of
the diagram

σ ÞÑ Xσ ˆ AV ´σ.

In particular, if G is a compact Lie group, we may form ZpK; pG, ptqq. This spaces inherits
a GV -action and we have

ZpK; pG, ptqqhGV » pZpK; ppt, BGqqq

by [DS07, Lemma 2.3.2].

5.3. Multiplicative collapse of some Eilenberg-Moore spectral sequences.

Theorem 5.8. Let X Ñ B Ð Y be a diagram of spaces. Assume that
(1) The cohomology of all three spaces with Fp coefficients is a polynomial algebra on

finitely many even degree generators.
(2) The maps H˚pB,Fpq Ñ H˚pX,Fpq and H˚pB,Fpq Ñ H˚pY,Fpq are surjective and

send generators to linear combinations of generators.
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Then, under the classical convergence assumption, the Eilenberg-Moore spectral sequence
collapses multiplicatively, i.e. there is an isomorphism of Fp-algebras

TorH˚
pB,Fpq

pH˚pX,Fpq, H˚pY,Fpqq – H˚pX ˆh
B Y,Fpq.

Proof. The surjectivity assumption insures that the diagram
H˚pX,Fpq Ð H˚pB,Fpq Ñ H˚pY,Fpq

is injective by Remark 4.6. From Theorem 4.3, we obtain that the diagram of E2-algebras
C˚pX,Fpq Ð C˚pB,Fpq Ñ C˚pY,Fpq

is formal. It follows that there is a quasi-isomorphism of E1-algebras
H˚pX,Fpq bL

H˚pB,Fpq H˚pY,Fpq » C˚pX,Fpq bL
C˚pB,Fpq C˚pY,Fpq.

Under the Eilenberg-Moore convergence assumption, the right-hand side is quasi-isomorphic
to C˚pX ˆh

B Y,Fpq. □

Remark 5.9. Arguably the most interesting case of application of the previous theorem is
when X, B and Y are classifying space of compact Lie groups. In that case this Theorem is
a weaker version of the main results of [Fra21a, Car23]. Indeed the main theorem in those
papers does not have our second assumption. On the other hand, those papers assume that
p ‰ 2 and we are able to say something also in the case p “ 2 (see next remark).

Remark 5.10. Consider the diagonal inclusion Up1q Ñ Upnq. The quotient is PUpnq. By
[Bau68, Section 8, Example 4], the induced map in cohomology

H˚pUpnq,F2q Ñ H˚pUp1q,F2q

is surjective if and only if n is odd. So in those cases, our theorem states that the Eilenberg-
Moore spectral sequence computing H˚pPUpnq,F2q collapses multiplicatively. In contrast, if
n ” 2 mod 4 this spectral sequence is known to have multiplicative extensions. In particular,
if n “ 2, there is a homeomorphism PUp2q – RP3 and it is observed in [Fra21a, Remark
12.9] that the algebra TorH˚

pBUp2q,F2q
pH˚pBUp1q,F2q,F2q contains a non-zero element in

degree 1 that squares to zero.

Corollary 5.11. Let pX, xq be a based space with H˚pX,Fpq – SympV q with V finite
dimensional an concentrated in even positive degrees. Then there is an isomorphism of Hopf
algebras

H˚pΩX,Fpq – Λps´1V q

Proof. The previous theorem gives us an isomorphism of algebras
H˚pΩX,Fpq – TorSympV q

pFp,Fpq “ Λps´1V q

On the other hand, by the previous theorem, the diagram
C˚ppt,Fpq Ð C˚pX,Fpq Ñ C˚ppt,Fpq

is E2 (and hence E1) formal. Equivalently, the augmented algebra H˚pX,Fpq is E1-formal.
This implies that there is an isomorphism of coalgebras

H˚pΩX,Fpq – H˚pBarpH˚pX,Fpqq

where Bar denotes the bar construction of an augmented algebra :
BarpAq :“ Fp bL

A Fp.

□
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Remark 5.12. As we mentioned in the proof of the corollary, the statement about the
coalgebra structure only requires E1-formality. This holds if the cohomology is polynomial
without the evenness assumption (see [SH70]). On the other hand, the statement about
the algebra structure is not true if we only assume E1-formality. As an example of this
phenomenon consider X “ KpZ{2, 2q. Then we have

H˚pX,F2q “ F2rx2n`1, n ě 0s

with x2 denoting the fundamental class and

x2n`1 “ Sq2n´1
. . . Sq1x2.

Then C˚pX,F2q is E1-formal since its cohomology is polynomial.
On the other hand, H˚pΩX,F2q “ H˚pRP8,F2q “ F2rys with |y| “ 1 with the Hopf

algebra structure given by
∆pyq “ y b 1 ` 1 b y.

We observe that, as a coalgebras, there is indeed an isomorphism
H˚pΩX,F2q –

â

ně0
Λry2n s “ H˚pBarpH˚pX,F2qqq

but this isomorphism is not compatible with the algebra structure.
In fact, it can be shown that C˚pX,F2q is not E2-formal. Indeed, for any space Y , the

operation ξ of the W1-structure on H˚pY,F2q is simply given by x ÞÑ Sq1pxq “ Sq|x|´1
pxq.

It follows that an E2-formal space must have a trivial operation Sq1. This is not the case for
X.
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